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Chapter 1

Introduction

While networks are growing faster and becoming more valuable every day,
managing them efficiently becomes both harder and more important. There
are of course technical problems involved in monitoring ever expanding net-
works. Performances and reliability become serious issues when centralized
services outgrow their bottlenecks. But there are also organizational con-
cerns. Large interconnected networks with separated administrative entities
can not be managed efficiently by a central authority forever. The various
operators need to cooperate to ensure the network keeps working correctly.

In this context the use of a distributed monitoring system seems useful
to address both problems. On the technical side, adding peers to a properly
designed peer-to-peer system make it more useful and reliable instead of less
useable and more prone to failure. On the administrative side, a decentral-
ized monitoring system to globally share measurements may let operators
anticipate and diagnose problems with minimal administrative overhead and
maximum efficiency. Furthermore a peer-to-peer system without single point
of failure is naturally more resilient to significant networks problems thus en-
suring it stays available when it is most needed.

In this work we first analyze the existing tools that can be used to design
an efficient distributed monitoring system in chapter 2. We then describe the
implementation, advantages and limits of a peer-to-peer system for network
measurements in chapter 3. This is followed by a review of related work by
other authors in chapter 4. We finally conclude with some words summarizing
what has been done and how this work can be used in chapter 5.
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Chapter 2

Overview of Peer-to-peer

Systems and Network Metrics

This chapter describes the concepts that will be used in chapter 3 as well as
some alternatives.

2.1 Peer-to-peer Architectures

The traditional paradigm in network systems is the client-server architecture
in which several clients connect to one or more servers which provide a service.
There is no direct connection between client hosts. When two or more clients
have to communicate with each other they have to make all their messages
go through a common server. Some typical client-server protocols are HTTP,
Telnet and SSH.

The ”peer-to-peer” term is used to name a lot of different things but in
this document it refers to a computer network in which hosts (which are called
nodes or peers) can act both as servers and clients. That is, each host can
connect directly to any other host. These networks have been popularized by
Napster, KaZaA and more recently by eDonkey and BitTorrent. A peer-to-
peer system is usually considered more robust (since there is no single point
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of failure1) and scalable (since adding nodes is not supposed to increase load
on a single server) but slower than a client-server architecture under normal
load. A peer-to-peer network is usually built on top of an existing network
which serves as the transport layer for the overlay network. That is, an
arbitrary subset of the hosts of the physical network are nodes of the peer-
to-peer network.

What follows is a summary of the main criteria used to classify peer-to-
peer network architectures (sections 2.1.1 and 2.1.2) as well as an overview
of a common problem in such networks (section 2.1.3).

2.1.1 Centralization

A peer-to-peer network is said to be centralized when the only part of the
network that is distributed is the data itself while the network management
stays centralized. In such a network, all peers have to contact a common
master host that will tell them where to find the data they seek. These data
move from peer to peer directly but the way to find which host has it is
centralized. BitTorrent, eDonkey and Napster (in their original form) are
popular examples of such peer-to-peer networks.

On the other hand, all nodes of a decentralized network are equal. They
all run the same algorithm in such a way that the overlay network manage-
ment is fully decentralized. Overlay networks of this type are naturally a
lot more robust since there is no single point of failure. Any node can crash
without disturbing significantly the network.

Besides, some peer-to-peer architectures are hybrid : some nodes (usually
called supernodes) act like in a decentralized network while others, which
form the bulk of the network, are like normal peers in a centralized network
with the supernodes acting as masters for them. It means an hybrid network
is a decentralized network of centralized networks. A typical example of
this kind of peer-to-peer architecture is the FastTrack protocol powering the
KaZaA software.

1This is not necessarily true because some so-called peer-to-peer networks are highly
centralized while a client-server system may be built in such a way that it is so redundant
it will be essentially without a single point of failure.
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Figure 2.1: Example of a small hybrid peer-to-peer network. Black nodes

are supernodes acting as masters for the other nodes. Edges represent the

communications concerning network management while communications con-

veying data can happen between any two nodes.

In practice, most peer-to-peer networks require some kind of centraliza-
tion at least to bootstrap nodes (see section 2.1.3).

2.1.2 Structure

In a structured peer-to-peer network, each node is responsible for a clearly
defined part of the shared data set. Given a key, there is an algorithm to
find a node who has the corresponding data efficiently.

Conversely, in an unstructured network, any node can have any data
and there is no guarantee that the sought value will be found even if it
exists somewhere on the network since there is no way to query every node
efficiently. Moreover, this approach will usually generate significantly more
traffic than the structured way that will try to exploit the overlay network
more efficiently.
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2.1.3 The Bootstrap Problem

A problem common to all decentralized peer-to-peer architectures2 is that in
order to join the network a node needs to know the address of at least one
other available node. There are several ways to solve that problem but most
of them add some kind of centralization.

An easy way to bootstrap a decentralized network is to make all nodes
register to a centralized directory server. When a node wants to join the
network it just has to ask the server for one or more entry point. Of course
this adds an important bottleneck and single point of failure which makes
the network significantly less robust and scalable.

The problems of this solution can be mitigated by using a hierarchy of
directory servers. However that hierarchy itself relies on a centralized mech-
anism. This still seems a good pragmatic solution in most cases because such
a hierarchy is already in place in most computer networks through the use
of domain name servers.

The DNS system makes it possible to bind any kind of data to a domain
and to have that information easily replicated to a lot of intermediary servers.
The use of DNS can make the distribution of entry points for a peer-to-peer
network a lot more scalable and reliable than with a simple centralized server
but the modification of the addresses of these starting points may take several
hours to propagate to all servers that have cached the information. In this
case, the risks would be to give addresses of nodes that are not part of the
overlay anymore and to always give the addresses of the same nodes which
would overload these nodes while other ones stay idle. The time to live of
each address may be set so low that no dead node stays for long in the list
and addresses keep changing but it would defeat the purpose of DNS in this
case, which is to avoid reaching the master server for each request.

A really decentralized bootstrapping could be implemented by broadcast-
ing an ”hello” message to all hosts on the node’s subnetwork, then to hosts

2 Decentralized networks are not the only field in which bootstrap problems arise. In
computer science the term is most often used when talking about booting (hence the name)
a computer or to refer to the process of writing a compiler for a language in which it is
written but it may also apply when speaking about establishing a trust relation. Moreover
it is used in other fields like statistics, physics, linguistics or finance to refer to a solution
to some kind of chicken-and-egg problem.
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that are one hop further, and so on. In practice such a ring search is rarely
effective. First, it requires a relatively high proportion of hosts to be part of
the overlay to avoid wasting a lot of bandwidth. Secondly, most routers on
the internet today don’t forward packets with arbitrary broadcast destina-
tions precisely to avoid saturating bandwidth.

An alternative would be to scan (sequentially or randomly) addresses to
find nodes but it still requires a high node density and wastes bandwidth.
Moreover the upcoming of IPv6 and its 128 bits addresses (versus 32 bits for
IPv4) makes such bootstrapping scheme a lot less efficient that it already is
since most addresses won’t be in use by any host before long.

2.2 Distributed Hash Table Algorithms

Distributed hash table algorithms are at the hearth of modern structured
peer-to-peer systems. Their role is to distribute data in such a way that they
are reachable by any node that knows their key in an efficient manner. It
means it has to make sure that the addresses of the nodes that have it can
be derived from the corresponding key as fast as possible.

Here is an overview of the four original DHT algorithms as they were first
described in 2001 : Chord [28] (section 2.2.1), Pastry [24] (section 2.2.2),
CAN [22] (section 2.2.3) and Tapestry [33] (section 2.2.4).

2.2.1 Chord

Each Chord node has an unique m bits identifier and all keys are encoded on
m bits. Conceptually, all the identifiers are ordered numerically on a circle.
Usually, only some of the identifiers on the circle have an associated node
since there are less than 2m nodes. The successor of an identifier id is defined
as the identifier to which a node is associated that is equal to or follows id.

Each node knows its s successor nodes and its s predecessor nodes on
the circle by their identifier and address. Each node also maintains a finger
table with m rows indexed from 1 to m. The ith row of node n contains the
identifier and address of the first node r = successor((n + 2i−1) mod 2m).
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Figure 2.2: A simple four nodes Chord circle with m = 4 and the finger

table for node 12. The black dots are nodes while white ones are identifier

to which no node is associated. The circle is divided in m areas representing

the m starting points from the finger table.

A value with key k is stored on the node with identifier successor(k).
This is achieved by finding the numerically closest but lower than k node
identifier and address by using the informations in the finger table and the
successor table. If keys and nodes are uniformly distributed on the key space,
finding the successor of a given key generally takes O(log N) steps (with N
the number of nodes) because the distance to the destination is roughly
halved on each step.

Adding a node to the network means it has to find its successor and insert
itself between it and its predecessor. Since any node can crash at any time,
successors, predecessors and finger tables have to be checked frequently to
be kept up to date. The network is supposed to withstand the crash of up
to s− 1 consecutive nodes since it can always communicate with the next or
previous one.

2.2.2 Pastry

Like with Chord, Pastry nodes are arranged on a circle which can contains 2m

hosts. However, routing in Pastry occurs differently than in Chord. Nodes
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02212102 1 22301203 31203203

0 11301233 12230203 13021022

10031203 10132102 2 10323302

10200230 10211302 10222302 3

10230322 10231000 10232121 3

10233001 1 10233232

0 10233120

2

Table 2.1: A Pastry routing table for node with identifier 10233102 and

b = 2 as seen in [24]. The top row is row zero. All numbers are in base

4. The underlined parts are the common prefixes while the bold digits are

the next digit. Cells with a single digit correspond to the current node (it’s

the ith digit of the node identifier with i the row number) while empty cells

represents unknown nodes. Nodes addresses are not depicted.

identifiers are considered as numbers in base 2b. Each node maintains a
routing table with dlog2bNe rows with N the number of nodes in the network.
Each row contains 2b−1 nodes identifiers and their associated addresses. The
nth row contains references to nodes that have the same identifier than the
current node up to the n−1th digit but for which the nth digit is the column
identifier. The entry in row i and column j is empty either if the ith digit of
the current node identifier is j or when no node is known that has the same
prefix than the current node identifier with ith digit equal to j.

Besides the routing table, each Pastry node maintains two other data
structures: a leaf set and a neighborhood set. The leaf set contains the |L|/2
nodes identifiers and addresses that are closest but follow the current node
on the circle as well as the |L|/2 nodes identifiers and addresses that are
closest but precede the current node on the circle. The leaf set is used in the
last part of the routing procedure.

The neighborhood set contains the identifiers and addresses of the |M |
nearest nodes according to some proximity metrics independent of the dis-
tances on the circle (see section 2.3.1 for some possible metrics). This set is
not directly used in the routing algorithm. It exists to try to keep all entries
in the routing table near (according to the proximity metrics) the current
node. This lets the overlay network adapts to the real network in such a way
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that communication between two nodes that are far apart according to the
proximity metrics is discouraged.

Forwarding a message is simply a matter of finding a node with an iden-
tifier that is nearer to the message identifier than the current node identifier.
This is achieved by looking up the leaf set first, then the routing table. If
no node in the routing table share a prefix with the message identifier that
is longer than the prefix of the current node, we try to find a node with the
same prefix but that is numerically closer.

PAST, the original Pastry implementation, doesn’t store each value in
only one node but on the k closest nodes to the key on the circle. This allow
for node failure and ”faster” (depending of the proximity metrics) look up of
values since the client only has to reach the node among k that is nearest to
him.

2.2.3 Content Addressable Network

CAN diverges from Chord and Pastry in that it doesn’t put nodes on a virtual
circle. Rather, values to store are given a key that represents the coordinates
of the value in a n dimensions space. Each node is responsible for the values
in a n dimensions hypercube in the data space. Each node knows the limits
of the adjacent hypercubes and the addresses of the nodes in charge of them.
Routing a message simply means to pass it to the neighbor that is in the
direction of the destination point.

A new node a willing to join the CAN overlay has to choose a random
point in the space and ask the node b responsible for that point to give it
some space. The node b then split its hypercube in two and delegates one of
them to node a with all the existing (key, value) pairs in that volume. Once
this is done, a and b notify their new neighbors of the change.

To allow for nodes failure, each node periodically sends its zone coordi-
nates and its neighbors addresses to its neighbors. When a node a doesn’t
receive any keep alive message from one of its neighbors b for some time, it
decides to initiate a takeover of the zone of b. This is done by sending an
appropriate message to b’s neighbors. On reception of takeover request, the
node cancel the takeover it initiated itself if its new zone would be larger
than the one that is being created by the sender of the takeover message.
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Figure 2.3: Example of the routing of a message in a two-dimensions space

with 21 nodes. Each rectangle represents a single node and the message is

passed between adjacent nodes based on the destination coordinates and the

knowledge of the limits of the current rectangle.

Redundancy may be achieved by establishing several ”parallel” spaces in
which each node is responsible for different zones. This can speed up routing
by always using the space in which the destination is closer. Moreover this
lets nodes fail without loosing data.

2.2.4 Tapestry

Analogously to Pastry, Tapestry routing is done through longest suffix match
and the overlay is organized according to a specified proximity metrics (net-
work latency) to minimize some lower level resource usage. However, the
overlay topology is not a circle but rather a tree or more precisely, a different
tree for each stored object.

Each object stored in the DHT maps to an unique root node which maps
the object’s identifier to the identifier of the nodes that store it. A node wish-
ing to make an object available to the overlay has to send a publish message
to the corresponding root. When passing the message, all the intermediate
nodes store an object location pointer mapping the key to the originating
node. This means that whenever a query for a given object crosses the pub-
lication path, it is directly forwarded to the appropriate node without having
to go all the way to the root. This mechanism is illustrated on figure 2.4. The
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0642 *042 **02 ***0

1642 *142 **12 ***1

2642 *242 **22 ***2

3642 *342 **32 ***3

4642 *442 **42 ***4

5642 *542 **52 ***5

6642 *642 **62 ***6

7642 *742 **72 ***7

Table 2.2: A simplified view from [33] of a Tapestry neighbor map for node

0642 when using four-digits octal identifiers (84 = 4096 nodes in namespace).

Each number in the table maps to a (possibly empty) set of nodes matching

the corresponding suffix.

location pointer also contains a timestamp for versioning as well as a pointer
to the upstream node in the publish path. This pointer allows objects to be
moved from node to node by deleting the old path when a new publication
message is sent.

Besides a neighbor map (as shown in table 2.2) and location pointers,
each Tapestry node maintains backpointers to nodes that have it in their
neighbor map. These backpointers are used both to maintain the neighbor
map and to to integrate the node in the overlay.

2.2.5 Recursive Routing vs Iterative Routing

All DHT routing algorithms can be implemented either by using recursive
routing or iterative routing. Recursive routing let the message ”naturally”
travel through the nodes: the originating node contacts only one node. In
iterative routing on the other hand, the originating node is the one doing
all the work by asking each node on the path for routing information and
ultimately by delivering the message to the destination node itself.

As observed in [23], the advantage of iterative routing is that it allows
for easy parallelization. This is very useful when nodes failure are common
(which is the case for any sufficiently large system) because it can dramati-
cally reduce time lost waiting for crashed nodes. However, iterative routing
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4361

4378

object

4378

object

Location Mapping

Query Path

4B4F

4A6D

57ECE791

437A
43FE

4664

4228

4377

AA93

Tapestry Pointer
(from neighbor maps)

Figure 2.4: Example of a Tapestry route as seen in [32]. The object 4378

is published by nodes 4228 and AA93 to root node 4377. When a message

sent to object 4378 crosses the publish path, it follows the location pointer

to the nearest copy of the object.

makes it more difficult to estimate timeouts because it makes nodes contact
a lot of different nodes that are not their neighbors. Contrarily to recursive
routing where nodes only communicate with their neighbors (which means
they can easily measure normal response time and thus maintain a good
timeout estimations). This problem may be resolved by using RTT-based
virtual coordinates estimation systems which let a node estimate its distance
to any remote node without taking any direct measurement. Some virtual
coordinates estimation systems are described in section 2.4.
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Figure 2.5: Examples of recursive (on the left) and iterative (on the right)

routing in a Chord circle (m = 4). Notice that in practice, a good implemen-

tation will maintain two finger tables per node to allow circling both ways.

In this case these figures are not accurate since reaching node 7 from node

12 would be faster going counterclockwise.

2.3 Network Measurement

Network measurements are useful in assessing the state of (part of) a net-
work. Either for operational (detecting problems before the users do,. . . )
or strategic reasons (how many additional customers can the system with-
stand,. . . ).

All networks measurements can be divided in two classes: active or pas-
sive. Active measurements are those for which hosts must explicitly send
probes. These probes may or may not be subject to the same network con-
ditions than actual traffic depending of the circumstances. Moreover this
additional traffic may cause congestion when generated inappropriately. On
the other hand passive measurements only use existing traffic. It means that
it can not take measurement about links through which no packet is passing.
While this may not seem to be a problem at first sight, some rarely used links
have to be closely monitored to make sure they are available (like backup or
emergency lines,. . . ).
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Beside the metrics themselves one must choose which hosts, links of traf-
fic classes must be measured. There seems to be no fixed rule for that since it
depends on the kind of network, available equipment and the network topol-
ogy itself. For example administrators of an enterprise network with a single
ISP and some VPN connections might be more interested in making sure
that all user can access a predefined set of servers while internet backbone
operators will find more useful to monitor latency from one end to the other
of their network.

2.3.1 Metrics

There are several metrics that can be used to measure network performances.
Let us consider the most common ones.

Round Trip Time
Round trip time or RTT between two hosts A and B is the time it takes

for a packet to go from A to B and back. This measurement is usually done
by sending an ICMP echo packet (as described in [20]) and measuring the
time it takes to receive the corresponding ICMP echo reply message. It can
also be done passively by timing existing data flows when an immediate reply
is expected. RTT is by far the most basic and common metric used in this
context. It is easy to interpret and doesn’t require any special software on
the target host since virtually all IP-enabled equipments can speak ICMP.
A significant increase in RTT value usually means that packets are delayed
because of congestion on the path between the two hosts. It may also be
caused by a change in routing topology. The distinction can often be made
by examining the time-to-live field in the IP packet. RTT is the natural
metric for timeout estimation as described in section 2.2.5. Of course it is
necessary to account for a safety margin to reduce risks of false timeouts.

IP Hops count
IP hops count between two hosts is the number of intermediate routers that

lie between those two hosts. IP hops count measures more topological values
which don’t have much to do with instantaneous network performances a
priori. However a sudden change of topology usually indicates some serious
network problems that have consequences on performances and availability
of service. IP hops count measurements are usually taken by sending UDP
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packets with increasing TTL. First packet is sent with a TTL of one hop
which means an ICMP TTL exceeded message will be sent by the first router
on the path. Second packet is sent with a TTL of two and so on until
a packet reaches its destination (and an ICMP port unreachable packet is
received). It means it takes at least twice as many packet as there are routers
on the path to take a measurement. Moreover, there is a large proportion
of hosts on the internet that don’t reply at all to UDP packets on closed
ports because of very defensive firewall configurations (usually to slow down
rogue port scans). This can be worked around in most cases by using ICMP
echo packets (assuming ICMP TTL exceeded messages are not blocked and
no router on the path enforces packet normalization with minimum TTL3)
but it still uses a relatively large number of packets.

Packet Loss
Packet loss measurements are useful to detect congestion, overloaded routers

and excessive link noise. However it is hard to measure accurately and ef-
ficiently since such event are relatively rare on typical networks. Sending
too much probes will skew the results while sending not enough probes will
render the measurement useless. Packet loss measurement is usually com-
bined with RTT measurement. Passive measurement is also possible but it
is not always possible to determine if a packet was really lost on the network
or if no response was required from remote host without deep knowledge of
the upper-layer protocols (and thus possibly costly analysis of the packets
payloads).

Jitter
Jitter is the variation of delay between packets of the same stream. It is

usually caused by the variation of routers load. While jitter doesn’t matter
much for ”traditional” IP network services (HTTP, FTP, SMTP,. . . ) it be-
comes critical when dealing with applications that have real-time constraints
like live voice and video streaming. Proper jitter measurement is not always
possible because both endpoints need to actively cooperate by measuring
time between received packets.

3 Some firewalls can be configured to enforce a minimum TTL for specific packets. This
is mostly used to prevent ambiguities in packet interpretation in such a way that network
intrusion detection systems see the same thing than the destination host.
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Other metrics, namely autonomous systems hops count and geographical
distance have been investigated by Huffaker, Fomenkov, Plummer, Moore
and Claffy [14] but they are revealed to reflect network conditions poorly
and are thus not very useful in assessing networks performances.

2.4 Virtual Coordinates Estimation Systems

As seen in section 2.2.5, an efficient DHT algorithm for a large network of
unreliable nodes needs a way to accurately estimate response times between
any pair of nodes. This can be done by assigning network coordinates to each
node which let us easily estimate distance between any two nodes. Moreover,
this will allow us to estimate measurements between any pair of hosts assum-
ing the distance metric is the same than the metric we want to measure.

The field of network coordinates estimation is somewhat new but there
are already several working solutions among which GNP [18] (section 2.4.1),
PIC [10] (section 2.4.2) and Vivaldi [11] (section 2.4.3). Moreover, assigning
coordinates implies we need to settle on a geometric space in which we will
use them. This is discussed in section 2.4.4.

2.4.1 Global Network Positioning

The Global Network Positioning system and its sequel, the Network Posi-
tioning System described in [19], are based on a set of landmark nodes from
which all the coordinates of other hosts are derived. It assumes a n dimen-
sions Euclidean geometric space in which the triangle inequality holds4. The
n + 1 landmark nodes L1 to Ln+1 determine their coordinates in such a way
that they minimize the error between the virtual distances and the measured
distances. Let dx,y and d̂x,y be the measured and computed distances between
x and y respectively and cL1 , . . . , cLn+1 the sought coordinates, we need to
minimize the objective function fobj:

fobj(cL1 , . . . , cLn+1) =
∑

Li,Lj∈{L1,...,Ln+1}|i>j

g(dLi,Lj
, d̂Li,Lj

) (2.1)

4 The triangle inequality states that for any three points A,B,C in an Euclidean space
|AB| ≤ |AC|+ |CB|.
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with g being an error measurement function that can be as simple as

g(dx,y, d̂x,y) = (dx,y − d̂x,y)
2 (2.2)

This optimization problem can be easily resolved using any non-linear pro-
gramming optimization algorithm (the original GNP system uses the down-
hill simplex method [17]). Once the landmarks coordinates are known, the
coordinates h of any host can be computed similarly by measuring the dis-
tance to each landmark and minimizing the function hobj:

hobj(h) =
∑

Li∈{L1,...,Ln+1}

g(dh,Li
, d̂h,Li

) (2.3)

Primergy

Primergy

Primergy

A

C
B

x

Figure 2.6: Example of GNP and PIC coordinates calculation in a two di-

mensions space. Coordinates of host x are inferred by measuring its distance

to each of the landmark nodes A, B and C.

The most obvious problem with this scheme is that it is heavily cen-
tralized: landmarks can get overloaded by measurement requests and a bad
selection of these master nodes will make coordinates estimation a lot less
accurate. In order to mitigate the centralization problem and make the sys-
tem more scalable, NPS introduces a landmarks hierarchy in such a way that
nodes at level L only contact nodes at level L and L− 1.
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2.4.2 Practical Internet Coordinates

Like GNP, PIC assumes a n dimensions Euclidean space and each node re-
quires at least n + 1 landmark nodes to compute its coordinates. However,
there are no central landmarks. Each node knows N ≥ n + 1 neighbors from
which it chooses its landmarks. Choosing nodes at random from the neigh-
bors set gives better results when estimating relatively long distances while
choosing closest nodes makes short distances estimation more accurate. A
compromise that seems to give go results overall is an hybrid set of 25% of
close nodes and 75% of random nodes.

Finding the closest nodes is done by using PIC itself. When starting, a
node first computes its coordinates using a random set of nodes then ask
them for addresses of nodes that are close to itself. When it knows enough
close nodes, it probes then and recomputes its coordinates using the new
measurements. A ring search is also considered but as stated in section 2.1.3
it will work well only if the nodes density is sufficiently high.

k

di,k

i

j

di,j

d̂j,k

Figure 2.7: Node i measures distances di,j and di,k while asking nodes j and

k for their coordinates. This lets it compute the distance d̂j,k then remove

the nodes that most violate the triangle inequality by applying equations 2.4

and 2.5.

The PIC paper also describes a way to alleviate the effect of malicious
nodes that lie about their coordinates. To do so, the node computing its
coordinates simply ignores the nodes that most violate the triangle inequality
using distances measured to neighbors and coordinates given by neighbors.
For each node j in its landmark set, node i computes the corresponding upper
and lower bounds ui and li as defined by equations 2.4 and 2.5. The nodes
with highest value for these metrics are then removed from the landmark set.
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ui =
∑

k|di,j≤di,k+d̂j,k

di,j − (di,k + d̂j,k) (2.4)

li =
∑

k|di,j≥|di,k−d̂j,k|

|di,k − d̂j,k| − di,j (2.5)

2.4.3 Vivaldi

The idea between Vivaldi is that each node is virtually linked to some other
nodes by springs. Measurements between linked nodes and comparison with
current coordinates tells in which direction and how much the node should
be moved in the virtual space to minimize effort on the springs. Each node
i starts at a small distance from the origin in a random direction. The new
coordinates xi are computed every time a new measurement is taken:

xi = x′i + δ × (di,j − d̂i,j)×
xi − xj

‖xi − xj‖
(2.6)

with δ the displacement timestep and x′i the old coordinates of node i. The
δ factor determines how fast the coordinates will converge and how much
they will oscillate around their point of equilibrium. Vivaldi makes the dis-
placement timestep a function of the estimated error of the coordinates of
the local and remote nodes:

δ = c× ei

ei + ej

(2.7)

with ei the estimated error on coordinates of node i and c < 1 a constant
factor. This means that a node that knows that its coordinates are accurate
enough won’t move a lot on each step and thus won’t oscillate much around
its real coordinates while nodes with large error will be moved quickly to a
position that reflects more precisely their actual coordinates. Moreover, if
the remote node doesn’t know its coordinates accurately, it won’t affect the
local node much. The coordinates accuracy is simply derived from the error
between the latest measurement and the latest distance estimation.

Vivaldi doesn’t require an Euclidean space because it doesn’t rely on the
triangle inequality. It allows for a better choice of geometric space to model
the network as discussed in section 2.4.4. Another possible advantage of Vi-
valdi over GNP and PIC is that since it doesn’t need to run an relatively
CPU intensive optimization algorithm, it might be better suited for embed-
ded devices with limited resources.
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2.4.4 Choice of the Geometric Space

Assigning coordinates to hosts requires to choose a geometric space in which
to embed the network.

Euclidean Space
The most obvious space on which to model networks is a two or three

dimensions Euclidean space. However it may not be the most appropriate
one. Adding dimensions make all coordinate estimation systems better but
empirical study by Dabek, Cox, Kaasshoek and Morris [11] suggests that
there is little gain to using more than 2 to 3 dimensions to model the internet
accurately while Tang and Crovella [29] which use more diverse datasets show
that there is no point in using more than 7 to 9 dimensions. The same paper
suggests that despite the potential for triangle inequality violations on the
internet it is generally respected when considering RTT metric. For any three
hosts A, B, C in the used dataset, there are less than 7% of cases in which
‖AC‖+ ‖CB‖ < ‖AB‖. Moreover less than 10% of all the hosts pairs A, B
have an alternate path going trough a third host C that is more than 20%
shorter.

Spherical Space
After observing that ‘the distances we are attempting to model are drawn

from paths along the surface of a sphere (namely the Earth)’ Dabek et al.
[11] tried to embed the internet into a spherical space. Results show that
a two-dimension Euclidean space performs better. This is because internet
paths are not always following the shortest physical path even at the Earth
level. That is most routes between Europe and Asia go through America.

Hyperbolic Space
Work done by Shavitt and Tankel [27] suggests that the internet is well

modeled by an hyperbolic space. This is explained by the fact that the
internet is mostly a core with remote nodes attached to it through links of
various lengths. This means that any path between any two hosts will be
”bent” to the core. Experimental results show that such a space gives more
accurate coordinates estimations than traditional Euclidean models excepts
for very short distances that are overestimated.
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Height-Vector Space
A simpler to manipulate but less natural geometric space has been devised

by Dabek et al. [11] as an Euclidean space augmented with a height. To go
from point X to point Y , one has first to cover the height from X to the
Euclidean space, go to the projection of Y then travel along the height of y.
This can be formalized as such:

[x, xh]− [y, yh] = [(x− y), xh + yh] (2.8)

‖[x, xh]‖ = ‖x‖+ xh (2.9)

α× [x, xh] = [αx, αxh] (2.10)

with xh the height of X and x its coordinates in the associated Euclidean
space. This model is a rough approximation of an hyperbolic space. Instead
of being simply bend to the core, all paths have to go straight to the Euclidean
space and back. Experiments show that the height vector space base on a two
dimensions Euclidean space is more accurate than a simple three dimensions
Euclidean space.

It should be noted that most of the cited studies in this section use dataset
derived from the internet. It means that as well as a model fits the internet,
it doesn’t necessarily represent other networks with the same accuracy. For
example, ad hoc wireless networks may be highly decentralized to the point
of not having any significant backbone. This is important, because this is
precisely that kind of collaborative networks that could get the most bene-
fit from a decentralized monitoring system (see section 3.7). Moreover the
prominent metric used for coordinates and distances estimations is the round
trip time to the detriment of other ones. This is not necessarily a problem
as most network metrics are linked in some way to latency between hosts.
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Chapter 3

Implementation

This chapter describes the design of a distributed monitoring system, the
choices that have been made, possible improvements that have not been
implemented (section 3.6) and test results (section 3.5).

3.1 Which Metric to Use for What?

There are two network metrics to choose for this system. There is the metric
that will be measured by the system of course but there is also the proximity
metric to use in the DHT algorithm to optimize performances (as seen in
sections 2.2.2, 2.2.4 and 2.2.5). While the former should be replaceable by
any measurable metric the later should be carefully chosen to reflect network
performances in order to estimate timeouts accurately.

Most proximity metrics used by DHT implementations and virtual co-
ordinates estimation systems are based on RTT measurements. This seems
to be a sensible choice for timeout estimation and to try to keep the best
possible performances. As it is also one of the easiest metric to measure both
passively or actively we will keep this choice for the implementation.

The metric measured by the system could be any of those cited in section
2.3.1 but I chose RTT for simplicity’s sake. Moreover it allows us to reuse
the virtual coordinates estimation system for more than just performances.
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It permit indirect measurements as described in section 3.4. However to
be extended to other metrics this requires a parallel coordinates estimation
system for each metric.

3.2 Modifying an Existing Implementation

Instead of writing a complete DHT and virtual coordinates estimation system
from scratch, I chose to modify an existing implementation. It means I had
to write less code than what would have been required to build a completely
new implementation but it still required significant work since understanding
an existing application deep enough to modify it is not always an easy task.
Moreover, modifying an existing implementation is generally more useful
for the original author and users because, even if changes are not directly
assimilated, they usually reveal some (potential) bugs that wouldn’t have
been found and fixed otherwise.

There are numerous implementations of the distributed hash table algo-
rithms described in section 2.2 but there are very few open source1 DHT that
incorporate a network coordinates estimation system. In fact, the only one
I was able to find is Bamboo [6], developed by Sean Rhea for is PHD thesis
[23]. An alternative to modifying Bamboo would have been to incorporate
an existing network coordinates estimation system into an existing DHT but
this is the kind of software integration that may prove time expensive while
modifying an existing software including both systems is easier.

Bamboo is an open source2 Pastry DHT written in Java that uses iterative
routing and the Vivaldi [11] coordinates estimation system. It has been
designed to be especially resilient to slow nodes and rapid nodes joins and
failures. To achieve this goal it performs periodic recovery by replicating
data to a configurable number of nodes. Objects stored into Bamboo are in
fact quadruplets < key, value, h(secret), ttl >. The key and value are self
explanatory but the last two fields are worth an explanation. The ttl (short
for ”time to live”) is the time remaining before the object is deleted from

1 Open source as in ”the source can be freely modified for academic purpose”.
2 Open Source as in the Open Source Initiative definition since it is licensed under the

three-clauses BSD license.
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the node if it isn’t refreshed. The h(secret) is a cryptographic hash3 of a
secret that may be used to remove the object from the DHT. When a node
receive a remove request containing triplet < key, h(value), secret, ttl >,
it discards the corresponding object and propagates this value to replicas
while TTL isn’t exhausted. Objects are uniquely identified by the triplet
< key, h(secret), h(value) > which means that it is possible to store several
values with the same key and h(secret).

Bamboo is currently deployed on PlanetLab as part of the OpenDHT
project [2]. PlanetLab [3] is an overlay network of nearly 800 nodes dis-
tributed on over 400 sites. It is used as a testbed and deployment platform
for a variety of research projects involving distributed networks. It is noto-
riously unreliable4 and thus is the perfect environment to test a distributed
application that tries to be resilient to nodes failure. Anybody connected to
the internet can store and retrieve data on the OpenDHT network.

Bamboo doesn’t really try to solve the bootstrap problem (see 2.1.3):
node operator needs to explicitly specify at least one existing node address
in the configuration file. However addresses of OpenDHT nodes are available
through DNS requests which effectively alleviate the problem since these
addresses don’t change often.

3.3 Bamboo Stages

Bamboo is based on a staged event-driven architecture (SEDA) [30] which
divides the application into stages which communicate by sending events to
each other through queues. The Bamboo architecture make it relatively easy
to add features taking advantage of the DHT and Vivaldi stages. One just
has to write a new stage which registers events types it should receive and
sends events to other stages whenever needed. Once the stage is written and
compiled, it must be added to the Bamboo configuration file (which is also

3 A hash is a fixed length ”summary” of an arbitrary length string. A hash function h

is said to be cryptographic if (a) given a hash h′ it is ”hard” to find a m such as h′ = h(m)
and (b) it is ”hard” to find two different messages m and m′ such as h(m) = h(m′).
Popular cryptographic hash function are MD5 and SHA-1.

4 An amusing example comes from [26] where the author says ’We were thus tempted
to blame our performance woes on PlanetLab (a popular pastime in distributed systems
these days)‘.
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used to pass parameters and options to stages) so it is loaded when Bamboo
is started.

Another advantage of the use of SEDA in Bamboo is that it is possible to
set up nodes that don’t run all the stages just by modifying a configuration
file before starting the application. An example would be a node running
the DHT stage (and thus storing the data) but not the monitoring part (and
thus not probing any host outside the overlay).

What follows is a short description of the main Bamboo stages. They are
presented roughly from lower to higher level.

bamboo.lss.Network
The Network stage is the one responsible for most of the low level network

communication using UDP packets. It receives NetworkLatencyReq and
NetworkMessage events that are handled by sending the corresponding pack-
ets on the network and emits NetworkLatencyResp and NetworkMessageResult

events. Stages willing to receive network messages have to register their
handler using the Network.registerReceiver() method. A network sim-
ulator is also available using the bamboo.sim.Network stage that inherits
the bamboo.lss.Network stage and redefines the appropriate methods to
simulate a whole network of Bamboo nodes using only one computer.

bamboo.router.Router
The Router stage is responsible for mapping the node identifier to the cor-

responding IP address, maintaining the Pastry circle and routing messages
to nodes. This is basically the hearth of the Pastry implementation. The
main event type it has to handle is BambooRouteInit which is a a request
to route a message in the overlay. Stages wishing to receive messages re-
ceived through Pastry have to register with the Router stage by sending it
a BambooRouterAppRegReq event.

bamboo.db.StorageManager
The StorageManager is responsible for storing data on disk using Berke-

ley DB files as backend. The main events it receives are PutReq for storing
new objects, DiscardReq to discard existing objects, GetByKeyReq to re-
trieve stored objects and IterateByGuidReq to retrieve objects spanning
a specified key range. IterateByGuidResp objects that are sent in re-
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sponse to IterateByGuidReq events may contains a handler to include into
IterateByGuidCont events in order to continue an iteration that hasn’t been
completed in one step. The StorageManager stage also makes sure that all
data is written to disk before Bamboo shuts down so it can load it back when
it started again.

bamboo.dmgr.DataManager
The DataManager stage is the one in charge for replicating objects to

other nodes as well as transmitting remove requests. It essentially handles
PutOrRemoveMsg, FetchDataReq and FetchMerkleTreeNodeReq events. In
order to keep synchronized data over all the nodes replicating a specified
key with minimum network overhead, the DataManager uses Merkle trees.
Merkle trees (or hash trees) are data structures that are used to divide arbi-
trary data into smaller chunks that can be checked for integrity individually
in any order. They are used by DataManager to efficiently find which objects
are not consistent between two replicating nodes.

bamboo.dht.Dht
As the name suggests, the Dht stage is the interface to the DHT itself.

It receives PutReq and GetReq events whose content is forwarded either to
remote nodes or to the local StorageManager stage. Requests to remove ob-
jects are in fact PutReq events with the put flag set to false. After handling
a PutReq or GetReq event, the Dht stage sends back a PutResp or GetResp

event telling whether the request succeeded and the requested object encap-
sulated in a GetValue object when appropriate. Figure 3.1 details the main
events received and sent by the Dht stage.

bamboo.dht.Gateway
The Gateway stage is responsible for handling communications with hosts

outside the overlay either through a Sun RPC or XML-RPC interface. There
are five procedures that clients can call:

put which takes three self explaining arguments: key, value and ttl. There
are three possible return values which may mean the operation suc-
ceeded, that there are not enough available nodes for replication or
that a transient failure occurred.
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Figure 3.1: Simplified class diagram of the event classes associated to

the Dht stage. The GetValue class is not an event (it doesn’t implement

QueueElementIF). It is used to transmit the value itself from the Dht stage to

other ones through a GetResp event. The placemark field found in GetResp

and GetReq events is a handler to allow iterating over objects.

get has three arguments too: key, maxvals which indicates the maximum
number of values to return and placemark which is a handler that is
used to continue iterating on values returned by a previous get. The
return value contains a set of values and a placemark.

put removable is like put but with two additional arguments: secret

hash which has been described in section 3.2 and hash type which
is supposed to let the user choose what hash to use for the secret

hash. The only valid hash types are ”SHA” and the empty string to
indicate that no secret hash is used.

get details is like get but with more detailed return value. For each re-
turned value, the corresponding ttl, hash type and secret hash is also
returned.

rm takes five arguments: key, value hash, ttl, secret and hash type

whose purposes are obvious. The return value is the same as for put.
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All these procedures take two additional arguments: client library and
application which are analog to the ”User-Agent” HTTP header (in fact,
when using the XML-RPC interface, the client library field is filled with
the content of the ”User-Agent” HTTP header). These requests are con-
verted into GetReq and PutReq objects that are then dispatched to the Dht

stage which sends back GetResp and PutResp events that makes the Gateway
stage respond accordingly to client. I modified this stage in the following
ways:

• A client can now ask a node to start probing a specified host. This
was done by patching the XML-RPC get callback so that it sends a
ProbeReq event when the maxvals argument is one and the key is a
valid IP address.

• A client can now ask a node to stop probing a specified host by calling
the rm procedure with the IP address of the probee as the key.

• A client can now ask a node its coordinates in the virtual coordinates
system by calling the get procedure with the key argument being the
IP address of the gateway and a maxvals value of one. This makes
the client able to estimate indirect measurements as described in sec-
tion 3.4.

bamboo.vivaldi.Vivaldi
The Vivaldi stage is a simplified implementation of the Vivaldi algorithm

described in section 2.4.3. Instead of being calculated after the estimated
accuracy of the remote node, the δ factor is constantly decreased before each
coordinates update until it reaches a specific threshold (fixed at 0.05). Three
geometric spaces are available: two Euclidean ones (three and five dimen-
sions) and a height-vector one based on a two dimensions Euclidean plane.
Latency samples are taken either by piggybacking on NetworkLatencyResp

events that are used by the Router stage to maintain the Pastry circle or by
sending PingMsg (which inherit from NetworkMessage) to random nodes. A
problem that may arise when using NetworkLatencyResp events to update
coordinates is that the sample will be naturally biased since they concern
only nodes that are neighbors on the Pastry circle. On the other hand, send-
ing explicit pings to random nodes implies an overhead first to locate the
random node, second to ping it.
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bamboo.prober.Prober
The Prober stage is a completely new stage. It is responsible for taking

the measurements themselves and passing them to the Dht stage for storage.
For performance sake, measurements are also stored locally. Probees can
be added either by specifying them on startup in configuration file or by
sending a ProbeReq event containing the address of the host to probe and
the address of the local node. When receiving a ProbeReq, the Prober stage
simply create a Probee object with no measurements and add it both to its
local cache and to the DHT by sending a PutReq event. To stop probing an
host, one has to send a ProbeReq event with the host address and a null

prober.

Figure 3.2: Simplified class diagram of the Prober stage and its associated

classes.

Every 42 seconds (the frequency can be changed in the configuration
file by setting the probes period variable), the Prober stage receives a
ProbeAlarm event. This triggers a measurement regarding the next Probee.
The measurement is done by sending a PingReq event addressed to the
PingStage that is part of the ostore.network package (which underlies
the Network stage). The PingStage then sends back a PingSuccess or
PingFailure event which is used to update the corresponding Probee object
accordingly (both locally and in the DHT). The Network stage is not used for
probing because it only handles UDP messages while we have to send ICMP
echo packets to take RTT measurements with hosts outside the overlay as de-
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scribed in section 2.3.1. This means we can not use the bamboo.sim.Network
simulator stage without modification either.

3.4 Storing and Retrieving Measurements

After taking a measurement, the Prober stage puts a serialized Probee in the
DHT. Initially they were simply raw Java objects but since they don’t really
have to be read back by Bamboo and to facilitate debugging they are now
human-readable strings summarizing the measurements. The key with which
is stored the Probee is the IP address of the probed host while the secret
hash is the hash of the IP address of the prober node. This lets the client
quickly retrieve all the measurements regarding a given host while retaining
the capability of removing measurements for a specific (prober, probee) pair.
Since the Probee stored in the DHT contains the IP address of the prober
there is no problem to find the secret corresponding to the hash and thus
remove the object from the DHT when needed. However no measurement
is ever removed explicitly from the DHT by Bamboo. They are kept until
their time to live is over. Since different values having the same key don’t
overwrite each other, it means there will nearly always be a constant number
of outdated measurements stored in the DHT. The number of these outdated
values could be reduced by tweaking the TTL. On the other hand, this can
be used as an history of all the measurements for the last n hours.

Instead of reusing Bamboo as a client, I wrote an independent client
to retrieve measurements from the DHT. It is written in Perl and based
on a modified version of the Net::OpenDHT library [8] which was originally
written to access OpenDHT through the XML-RPC interface. The library
was modified in the following ways:

• it now allows the user to choose the maxvals argument for get requests;

• the rm procedure has been implemented;

• gateway address and port can now be defined by user instead of being
hardcoded to use OpenDHT.

The client itself handles seven commands:
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probe which takes two arguments: the prober and the probee addresses. It
connects to the prober which must be running the Gateway stage and
ask it to start probing the specified host.

rmprobe which have the same arguments than probe and ask the prober
to stop probing the specified probee.

measure which takes two arguments: a gateway and a probee address. It
retrieves all the stored measurements regarding the probee, parses them
and prints them.

getcoord whose only argument is a node address which must be running
the Gateway stage. It just asks it its coordinates and prints them.

getdist which takes two nodes addresses as arguments, ask them their co-
ordinates and prints the estimated distance between them.

infercoord which takes a gateway and a probee addresses as arguments,
retrieves coordinates of N +1 probers (assuming a N dimensions space)
of the probee as well as measurements they took, infers coordinates
of the probee from these data then prints them. The algorithm for
inferring host coordinates from probers data is detailed below.

inferdist which takes either a gateway and a probee addresses or a gateway
and two probees addresses as arguments. It infers coordinates of the
probee or probees and prints the distance between the hosts specified
by the last two arguments.

Since Vivaldi requires a relatively large measurements set before converging
and because we want to be able to estimate coordinates for an host that is
probed by a minimum number of nodes the GNP/PIC algorithm is used to
estimate coordinates of hosts outside the overlay. It means that an Euclidean
space an Euclidean space with a limited dimensions count has to be used.
In order to estimate the host coordinates h in the N dimensions Euclidean
space we need N + 1 prober nodes from which we retrieve their coordinates
L1, . . . ,LN+1 and the measurements d̂h,L1 , . . . , d̂h,LN+1a

they have taken re-
garding the host (in fact all the measurements are retrieved with one request
to any node, each prober is contacted only to retrieve the coordinates). We
then need to minimize the objective function 2.3. This is done using Matlab
and the following error measurement function:

g(dx,y, ˆdx,y) = (d2
x,y − d̂2

x,y)
2 (3.1)
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The distances are squared simply to avoid computing a square root for every
evaluation of the function. Once the coordinates of the host are known it
is trivial to estimates the distance between that host and any other host for
which the coordinates are known.

As stated before, the Vivaldi stage only estimates coordinates regarding
the network latency which means only latency can be estimated between two
hosts. Other metrics would require to set up parallel Vivaldi stages that
would take corresponding measurements.

3.5 Testing

Continuous testing was performed during development. The application was
semi automatically deployed and tested on four to twenty nodes before each
commit. Using a simple script for deployment through SSH saved a lot of
time for test runs. Debugging was done through heavy use of log messages
using the log4j framework [1] already in use in Bamboo and the jdb debugger.

As stated earlier, Bamboo provides a network simulator that can sub-
stitute itself to the Network stage. However the PingStage bypasses the
Network stage which means the simulator can’t be used as is to test indirect
measurements. Instead four real nodes were deployed on five European hosts
with the purpose of monitoring ten probees. Each probee was pinged by four
different nodes. The distance to the fifth node was then estimated using the
algorithm described in section 3.4. An effective RTT measurement was then
performed and the relative error was finally calculated. Among the ten esti-
mations, seven are correct within 10% while the three others show aberrant
values with relative error between 150 and 200%. This seems to be due to
the fact that these hosts are far away from the other ones while the nodes
are all relatively close from each others.

3.6 Possible Improvements

This section describes ideas of future directions that have not been imple-
mented in this work but that seem promising.
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Figure 3.3: Distance estimation shows an aberrant behavior when the

probee-prober distance is significantly higher than the prober-prober dis-

tances.

3.6.1 Automatically Finding Probees

Instead of letting the user choose which node should monitor which host it
would be possible to let the system decide by itself. However it is not clear
how this should be done. Discovering potential probees is easy but deciding
which nodes should be responsible for probing them isn’t. In fact, different
networks have different needs and measurements that would be relevant in
one might be useless in another.

Most of the ways to find hosts addresses can be divided into two classes:
local (or passive) discovery which doesn’t need to actively send packets on
the network and remote (or active) discovery which requires the prober to
actively access the network. Depending on the type of computer on which the
software is running, there are various places to scour to find hosts addresses
without accessing the network. Among these we can cite:
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• the IP routing table;

• the ARP table;

• the DNS cache;

• the connections table (netstat,. . . );

• the headers of inbound and outbound packets;

• the DHCP leases database;

• various configuration files depending on the platform.

Notice that the headers of inbound and outbound packets contain almost all
the addresses that can be found at other places but their inspection usually
requires special privileges. Moreover, examining them all may be expensive
depending on the computer and its use.

Finding new hosts on the network may be done through several techniques
depending on the expected hosts density on the current subnetwork:

• ping broadcast;

• traceroute;

• webspider;

• random or sequential addresses scan.

It seems obvious that these discovery attempts should be throttled to avoid
any kind of denial of service.

3.6.2 Security Considerations

There is currently no way to restrict access to the DHT short of firewalling
the RPC interface. It means that anybody able to retrieve measurements
can also put or remove values from the DHT as well as ordering a node
to start or stop probing an arbitrary host. This could be used by malicious
users to introduce erroneous measurements, delete stored data, initiate denial
of service attacks or possibly bypass firewalls. To avoid this problem, an
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authentication scheme could be integrated in the Gateway stage but this
would significantly complicate the RPC interface.

Another problem regarding malicious users is the possible presence of
rogue nodes especially set up to disrupt the overlay and measurements. As
explained in section 2.4.2 PIC includes a mechanism to ignore misbehaving
nodes for coordinates calculation. It is adaptable to Vivaldi as long as an
Euclidean space is used. However it doesn’t solve the problem of nodes
manipulating data in the DHT in some pernicious way. The Pastry-based
pMeasure DHT [15] (see chapter 4) uses a public key infrastructure to avoid
this kind of problem. However authenticating nodes and the messages they
send doesn’t make them automatically thrustable. The solution may lie in
the introduction of a currency system as described by Garcia and Hoepman
[12].

3.6.3 Implementation Improvements

Rather than modifying semantic of existing XML-RPC commands it would
have been cleaner to add new procedures. However the Gateway stage is
a 1500+ lines class and the best way to modify it wasn’t obvious at first
sight. Adding procedures with their own arguments would allow for more
flexible measurement requests. For example it would be possible to set probe
frequency for each probee instead of probing hosts following a fixed rate
round-robin pattern. It would also make alternative measurements easier.
Instead of being limited to RTT, any metric cited in section 2.3.1 could be
used. However it would require an additional Vivaldi stage for each new
metric we want to be able to estimate between any two hosts.

Accuracy of distance estimation could probably by improved by tweaking
the error function in equation 3.1 as well as the minimization algorithm used
to find the coordinates.

3.7 Use Cases

Such a distributed monitoring network system could be used in various net-
work environments. A deployment at the internet-level could allow services
providers to cooperate more efficiently by sharing their measurements with-
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out the need for a centralized or hierarchical storage infrastructure. Since
all the measurements history taken with this system are available to any
network administrator, it could dramatically reduce time needed to diagnose
and locate the origin of a lot of network problems.

Another place where such a tool seems to have a lot of potential is in city-
wide networks operated by individuals like ReseauCitoyen [5] in Brussels,
Île Sans Fil [7] in Montréal or P***s Sans Fil [4] in Paris5. Given that
each ”operator” of these networks is typically an end user without enough
technical expertise to set up complex monitoring softwares, that he controls
only one router and that there is rarely a robust centralized infrastructure
deployed, a distributed monitoring system could be very valuable to network
administrators in order to diagnose problems that are not necessarily caused
by their own routers.

Of course, this system could also be used in more traditional networks
in large companies or universities but these networks usually already have
an established centralized administration able to configure each router that
may make a distributed monitoring system less useful.

A possible drawback of this implementation is that Bamboo was not
designed to run on hardware with limited computing power and memory
space. Now, routers (be it ”professional” or home-made routers) are typically
dedicated machines with relatively small RAM space. Which means this
implementation will probably not run properly on most of the currently used
routers. However, it is still possible to run it on hosts that are not routers.

Another obstacle that this system would have to overcome for adoption
in private networks is the use of firewalls. Obviously nodes must be able to
communicate with each other as well as to send probes to probees. This may
be a problem on heavily compartmentalized networks.

5 Paris Sans-Fil is not the correct denomination anymore since July 2007 after a justice
decision that this name infringe on the Paris name owned by the city. The new name of
the association is not known at the time of this writing.
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Chapter 4

Related Work

The closest work to this one seems to be pMeasure by Liu, Boutaba and
Hong [15]. The architecture is similar with Pastry nodes performing on-
demand measurements but it doesn’t allow indirect measurements without
explicit probing. However it provides a public key based authentication and
reputation system that let nodes refuse to take measurement on behalf of the
client if it hasn’t performed enough measurements itself.

The Scalable Sensing Service (S3) developed by Yalagandula, Sharma,
Banerjee, Lee and Basu is composed of a set of sensor pods that take mea-
surements and aggregate them on-demand. Clients may tell pods how the
data should be aggregated and subscribe to existing aggregated feeds. Aggre-
gation is done through a distributed information management system named
SDIMS [31] based on an arbitrary DHT algorithm. It tries to estimate all
the measurable metrics in the network based on the actual measurements
and a proximity estimation system namely Netvigator [21]. Unlike Vivaldi,
Netvigator doesn’t try to estimate global coordinates but only local distances
between nodes using a set of landmarks and intermediate routers that are
not part of the overlay.

DipZoom by Rabinovich, Triukose, Wen and Wang [16] is a centralized
marketplace for buying and selling measurements. It is targeted at compa-
nies that want to monitor their services from clients’ perspective. However
matching the measurement requests to the offers is done only by geographic
location.

37



More abstract papers are the Network Oracle by Hellerstein, Paxson,
Peterson, Roscoe, Shenker and Wetherall [13] and the Knowledge Plane by
Clark, Partridge, Ramming and Wroclawski [9] which push for more self-
managed networks by putting back intelligence in the core. The knowledge
plane suggests that measurements should be shared globally to allow the
network to heal itself using an integrated approach1. Distributed monitoring
systems are a step in this direction.

1 That paper is somewhat reminiscent to the seminal ”End-to-end argument” [25] and
indeed they share a common author.
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Chapter 5

Conclusion

The goal of this work was to design a scalable, automated and robust mon-
itoring system using a peer-to-peer network. We started by investigating
distributed hash table algorithms and their characteristics. We then exam-
ined common network metrics, how to measure them and how they can be
interpreted. That was followed by a study of some virtual coordinate esti-
mation systems that can be used to model large networks.

We then modified an existing DHT implementation including a virtual
coordinates estimation system to turn it into a network measurement tool.
This was done by adding a simple probing functionality that can be extended
to cover nearly any metric and storing the measurements in the DHT itself.
The next step was to modify the DHT interface so that it can control the
monitoring tool by telling it which hosts to probe as well as to be able to
retrieve the coordinates of the node in the virtual space.

Finally we implemented a client application to query the monitoring sys-
tem. This tools lets the user control which host should be monitored by which
node as well as estimates measurement between virtually any pair of hosts
that are probed by enough different nodes (assuming probers have enough
distance between them).

This application may prove to be useful to diagnose problems in large
collaborative networks with fractioned administration by allowing any oper-
ator to quickly find the measurements he needs thanks to the globally shared
data. Furthermore the peer-to-peer nature of this system makes it relatively
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easy to manage since there is no central server to set up and backup since
the data are automatically replicated through the network.
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Appendix A

Source Code

The full source code for this project is available at http://ms800.montefiore.
ulg.ac.be/~kunysz/bamboov-final.tar.gz. The SHA-1 hash for the file
is 4b38914737e67c81ec639e5d0700c6c32407d60a. Here is the list of files
that have been created or modified compared to the original Bamboo imple-
mentation:

test/prober.sh

test/prober.pl

doc/prober.cfg

lib/lib/perl5/site_perl/5.8.6/Net/OpenDHT.pm

src/bamboo/dht/Gateway.java

src/bamboo/prober/Prober.java

src/bamboo/prober/Probee.java

src/bamboo/prober/Makefile

src/bamboo/vis/FetchNodeInfoThread.java

src/bamboo/util/GuidTools.java

src/bamboo/Makefile

bin/prober.sh

bin/run-java

The client is test/prober.sh (which is a wrapper for test/prober.pl).
Nodes are started with the bin/prober.sh script. Logs are written in the
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log/ directory. The configuration file is generated by bin/prober.sh based
on the doc/prober.cfg template.
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