
Datamining a cloud

that wasn’t mean to be public
how I get my free amatuer pr0n

Krunch
adrien@kunysz.be

DC4420,
London, UK,

November 2012



A long time ago on an IRC channel far, far away. . .

<Mr.Orange> Mr.White: http://$SERVICE/p/14Rs/

<Mr.Orange> btw, Mr.White, we have this game in $COMPANY

called Clouderoulette; you take any given

$SERVICE link and increment it by one until

you find something interesting

<Krunch> Mr.Orange: with (10+26*2)^4 possibilities

i think indexing everything is feasible

within hours or days

That’s 14 776 336 combinations.



Wait, what?

How $SERVICE works:

◮ user uploads file

◮ service serves file publicly with URL of the form
http://$SERVICE/p/$BLOB/

Observations:

◮ the blob is short (1-4 characters)

◮ the blob is actually a counter, not a hash or random value

◮ but it looks random if you don’t know what ”random” means



What Would $DEITY Do?

20:50 <Krunch> Mr.Orange: $SERVICE indexing now ongoing

with a hundred threads performing HEADs

20:50 <Krunch> User-Agent: Mr.Orange made me do it

23:22 <Krunch> still indexing but i think i won’t need

bittorrent for a while



Technicalities

◮ count using Math::BaseCalc([0..9, a-z, A-Z])

◮ find the last value

◮ split the addresses space

◮ run HEADs in worker processes to retrieve each chunk

◮ write output in an awk(1)able format

Examples:

# path atime ret mtime H/M sz name

8 1310673767 200 1267080649 HIT 1969081 03 - Buy Me a Pony.ogg

fwc 1310682783 200 1298148693 MISS 6553936 anal cunt side 1 of

The URL for that audio file being http://$SERVICE/p/8



Lies, damned lies, and statistics

◮ indexed from 0 to 1NuC

◮ 241 993 URLs

◮ 111 070 actual files



HTTP response codes

1

10

100

1000

10000

100000

1e+06

400 502 403 500 503 200 404

co
u
n
t

HTTP response code



File types count

0

5000

10000

15000

20000

25000

avi xls html gif txt exe gz odt rar doc zipmp3png pdf jpg

co
u
n
t

file type



File types size
(5 ∗ 1011 is about 500 gigs)

0

5e+10

1e+11

1.5e+11

2e+11

2.5e+11

3e+11

3.5e+11

4e+11

4.5e+11

5e+11

7z exe gz mp4 iso pdf mp3 avi rar zip

by
te
s

file type



Finding 1: next file name is predictible

You can almost tail -f the upload logs.



Finding 2: rule 34 applies

<Krunch> 8L6 is german dinosaur porn



Finding 3: HIT/MISS header is not updated by HEAD

requests

You can tell when someone accesses any given file.



Finding 4: people upload files in batch

il 1310680381 200 1271597102 HIT 169279 FICHES-RECETTES-MAROC.pdf

im 1310680390 200 1271597104 HIT 164789 FICHES_RECETTES_THAILANDE

in 1310680401 200 1271597110 HIT 170502 FICHES-RECETTES-VIETNAM.p

io 1310680412 200 1271596925 HIT 24040656 V160410_13.010001.AVI

◮ upload some files that can identify you

◮ upload your anonymous sextape

◮ better wait at least a few hours between the two



Finding 5: $SERVICE doesn’t serve that much porn

◮ only 358 files that have a promising name

◮ kind of disappointing

◮ but if you like amateur, you’ll still find stuff



Happy ending

◮ $SERVICE people eventually realised there was a problem

◮ $BLOB is now a long-ish random string

◮ insider knowledge suggests they were concerned about poor
anonymisation (finding 4: people upload in batch)



Questions?

◮ adrien@kunysz.be

◮ Krunch on Freenode


