SystemTap: Full System Observability for Linux

Adrien Kunysz
adk@redhat.com

HaxoGreen, Dudelange, Luxembourg
23 July 2010

Who is Adrien Kunysz?

v

Senior Technical Support Engineer at Red Hat UK
» when you call support, | pick up the phone

co-founder of FSUGAr (Belgium)

Krunch or adk on Freenode

v

vV Y

| like to look at core files and to read code
> ...but sometimes you need something more dynamic

v

| am just a happy SystemTap user (not a developer)

What are we going to discuss?

Explaining SystemTap
Practical Examples
Requirements and safety
Guru mode

Comparison to Other Tools
Conclusion

More examples?

What is SystemTap?

According to http://sourceware.org/systemtap/

SystemTap provides free software (GPL) infrastructure to
simplify the gathering of information about the running
Linux system. This assists diagnosis of a performance or
functional problem. SystemTap eliminates the need for
the developer to go through the tedious and disruptive
instrument, recompile, install, and reboot sequence that
may be otherwise required to collect data.

» | like to think of it as a system-wide code injection framework

» with facilities for common tracing/debugging jobs
» makes it very easy to observe anything about a live system
> ...the problem is to figure out what you want to observe

http://sourceware.org/systemtap/

How does it work?

write or choose a script describing what you want to observe
stap translates it into a kernel module

stap loads the module and communicates with it

B

just wait for your data

The five stap passes

stap —v test.stp

Pass 1: parsed user script and 38 library script(s) in
150usr /20sys /183 real ms.

Pass 2: analyzed script: 1 probe(s), 5 function(s), 14
embed(s), 0 global(s) in 110usr/110sys/242real ms.

Pass 3: translated to C into
"/tmp/stapEjEdOT /stap_6455011c477al9ec8c7bbd5ac12a9cd0_-13
in Ousr/Osys/Oreal ms.

Pass 4: compiled C into
"stap_6455011c477al9ec8c7bbd5ac12a9cd0.13608.ko" in
1250usr /240sys /1685real ms.

Pass 5: starting run.

[...script output goes here...]

Pass 5: run completed in 20usr/30sys/4204real ms.

SystemTap probe points examples

SystemTap is all about executing certain actions when hitting
certain probe points.
» syscall.read
» when entering read() system call
> syscall.close.return
» when returning from the close() system call
» module("floppy").function("*")
» when entering any function from the "floppy” module
» kernel.function("*@net/socket.c").return
» when returning from any function in file net/socket.c
» kernel.statement ("*@kernel/sched.c:2917")
» when hitting line 2917 of file kernel/sched.c

More probe points examples

» timer.ms (200)
> every 200 milliseconds
» process("/bin/1s") .function("*")

» when entering any function in /bin/Is (not its libraries or
syscalls)

» process("/lib/libc.so0.6") .function("*malloc*")
» when entering any glibc function which has "malloc” in its
name
» kernel.function("*initx"),
kernel.function("*exit*") .return
» when entering any kernel function which has "init" in its name
or returning from any kernel function which has "exit” in its
name

RTFM for more (man stapprobes).

SystemTap programming language

» mostly C-style syntax with a feeling of awk

» builtin associative arrays
> builtin aggregates of statistical data

> very easy to collect data and do statistics on it (average, min,
max, count,. ..)

» many helper functions (builtin and in tapsets)

RTFM: SystemTap Language Reference shipped with SystemTap
(langref.pdf)

Some helper functions you'll see a lot

pid() which process is this?

uid() which user is running this?
execname () what is the name of this process?

tid() which thread is this?
gettimeofday_s() epoch time in seconds
probefunc() what function are we in?
print_backtrace() figure out how we ended up here

There are many many more. RTFM (man stapfuncs) and explore
/usr/share/systemtap/tapset/.

Some cool

stap options

trace only specified PID (only for userland probing)

run given command and only trace it and its children
(will still trace all threads for kernel probes)

list probe points matching given pattern along with
available variables

load given module debuginfo to help with symbol
resolution in backtraces

embed C code in stap script
» unsafe, dangerous and fun

Agenda

Practical Examples

Example 1: trace processes execution

Listing 1: exec.stp

1 probe syscall.exec* {
2 printf ("exec %s %s\n", execname (), argstr)

3}

$ stap -L ’syscall.exec*’
syscall.execve name:string filename:string
args:string argstr:string

stap exec.stp

exec gnome-terminal /bin/bash
exec bash /usr/bin/id -gn
exec bash /usr/bin/id -un
exec bash /bin/uname -s

exec bash /bin/uname -r

Example 2: real support case

Customer Hello, the saslauthd service mysteriously stops every
now and then, can you help?

Support Sure, what does strace say?
Customer It gets a SIGKILL.
Support OK, let's figure out who is sending the signal.

Example 2 continued: sigkill.stp

B = N B S R N

Listing 2: examples/process/sigkill.stp
Copyright (C) 2007 Red Hat, Inc., Eugene Teo

[...GPL blah...]
probe signal.send {
if (sig-name = "SIGKILL")

printf("%s was sent to %s (pid:%d) by %s uid:%d\n",
sig_name, pid_name, sig_pid, execname(), uid())

}

$ stap -L signal.send

signal.send name:string sig:long task:long
sinfo:long shared:long send2queue:long
sig_name:string sig_pid:long pid_name:string
si_code:string $sig:int

stap /usr/share/systemtap/tapset/signal.stp
SIGKILL was sent to saslauthd (pid:6202) by
AntiCloseWait.s uid:O0

Example 2 continued: fixing

$ find sosreport/ -name AntiCloseWait.sx*
sosreport/etc/cron.hourly/AntiCloseWait.sh

Support Fix your cronjob.

Customer Thanks.

Example 3: monitoring file read /write

Listing 3: filewatch.stp

1 probe kernel.function (" vfs_write”),
kernel.function (" vfs_read”)

2

{

3 dev_nr = $file —>f_path—>dentry—>d_inode—>i_sb —>s_dev
4 inode_nr = $file —>f_path—>dentry—>d_inode—>i_ino

5

6 if (dev_nr = stat2dev($1) && inode_nr = $2)

7 printf("%s(%d) %s 0x%x/%u\n",

8 execname (), pid(), probefunc(),

9 dev_nr, inode_nr)

0}

=
[

convert "stat —c %d” output to a proper device number
13 function stat2dev(s)

u |
15 return ((s & 0xff00) << 12) | (s & Oxff)

6}

Example 3 continued: using filewatch.stp

stat -c ’device: %d, inode: %i’ /etc/passwd
device: 64768, inode: 1805253

stap filewatch.stp 64768 1805253

bash (28549) vfs_read 0xfd00000/1805253

id (28553) vfs_read 0xfd00000/1805253

crontab (28579) vfs_read 0xfd00000/1805253

id (28585) vfs_read 0xfd00000/1805253

vim (28620) vfs_read 0xfd00000/1805253

Example 4: sniffing IM conversations

Listing 4: purplesniff.stp

1 probe process(”"/usr/lib64/libpurple.so.0")
2 .function(” purple_conversation_write”)
3
4 printf("<%s> %s\n",
5 user_string ($who),
6 user_string ($message))
7
}

This is the function we are instrumenting:

void purple_conversation_write (
PurpleConversation xconv,
const char xwho,
const char xmessage,
PurpleMessageFlags flags, time_t mtime)

Agenda

Requirements and safety

Requirements

» you need kprobes (CONFIG_KPROBES=y)

» for source-level tracing, you need debug symbols of the code
you want to trace
» package-debuginfo on RPM distros
» package-dbg on .deb distros
> build your application with gcc -g
» for kernel it's CONFIG_DEBUG_INFO=y
» for userland tracing you need the utrace kernel patch
> not in mainline (yet?)
> in Red Hat Enterprise Linux 54, Fedora,. ..

Performances and safety

» language-level safety features

>

>
>
»

no pointers

no unbounded loops

type inference

you can also write probe handlers in C (with -g) but don't
complain if you break stuff

» runtime safety features

>

>

>

stap enforces maximum run time for each probe handler
various concurrency constraints are enforced

overload processing (don't allow stap to take up all the CPU
time)

» many things can be overriden manually if you really want
> see SAFETY AND SECURITY section of stap(1)

The overhead depends a lot of what you are trying to do but in
general stap will try to stop you from doing something stupid (but
then you can still force it to do it).

Agenda

Guru mode

What is guru mode?

vV v v v Y

stap -g

allows you to actually change things, not just observe
set variables instead of just reading them

embed custom C code about anywhere

easy to mess up something and cause a crash

Example 5: changing kernel state in Guru mode

Listing 5: examples/general/keyhack.stp

1 # This is not useful, but it demonstrates

> # that Systemtap can modify variables in a
3 # running kermnel.

4+ probe kernel.function("kbd_event") {

5 # Changes ’m’ to ’b’

6 if ($event_code == 50) $event_code = 48

Example 6: another real support case

Customer Hello, my application mysteriously stops every 24
days. This seems to match the jiffies counter hitting
Ox7fffffff. Can you help?

Support Let me think about it.

» cannot write to /dev/mem above 1IMB in RHEL x86 (see
[Crash-utility] Unable to change the content of memory using
crash on a live system)

» we could build a custom kernel

» or we could use stap -g

Example 6 continued: setting kernel variable

10

11

12

Listing 6: set-jiffies.stp
h{

#include <linux/jiffies.h>

h}

function set_jiffies (value:long) %{
jiffies = THIS->value;
h}

probe begin {
set_jiffies($1)
exit ()

}

It tends to hang the system for a few seconds and to lock up
network drivers but it helped to reproduce and analyze the problem
in minutes instead of weeks.

Example 7: forbidding specific file names

Listing 7: examples/general/badname.stp (simplified)

1 function filter:long (name:string) {
2 return euid () && isinstr(name, "XXX")
3}
4
5 probe kernel.function(” may_create@fs/namei.c”).return
6
{
7 file_name = kernel_string($child —>d_name—>name)
8 if (!'$return && filter(file_name))
9 $return = —13 # —EACCES (Permission denied)

Agenda

Comparison to Other Tools

SystemTap vs DTrace

SystemTap is often described as "DTrace for Linux”. | never used
DTrace but from what | read. ..

» DTrace is specific to Solaris, FreeBSD, NetBSD and OS X
(for now; SystemTap is just for Linux)

» DTrace won't allow you to change anything (no -g)

» DTrace won't allow you to probe arbitrary symbolic
statements? (limited to functions boundaries and explicit
markers?)

» DTrace scripts are interpreted by a virtual machine in the
kernel (no loading of binary module)

SystemTap vs OProfile

OProfile takes sample every $N CPU cycles so you can try to figure
out what each CPU is spending its time on.

» OProfile only works to profile CPU usage
» OProfile cannot perform complex actions while sampling
» OProfile works with mainline kernel, even for userland profiling

» OProfile doesn’'t work from within most virtualized guests

SystemTap vs auditd(8)

» auditd can only trace system calls

» auditd cannot really do any proper decoding/filtering of the
syscall arguments

» auditd might be easier to set up on your distro
The sigkill.stp example with auditd:
auditctl -a entry,always -S kill -F al=9

And what it looks like in the logs (killing sleep(1)):

type=SYSCALL msg=audit(1275595476.234:430): arch=40000003
syscall=37 success=yes exit=0 a0=5b25 al=9 a2=5b25
a3=bb25 items=0 ppid=23188 pid=23189 auid=500 uid=500
gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500
fsgid=500 tty=pts2 ses=35 comm="bash” exe="/bin/bash”
subj=user_u:system_r:unconfined_t:s0 key=(null)

type=OBJ_PID msg=audit(1275595476.234:430): opid=23333
oauid=500 ouid=500 oses=35
obj=user_u:system_r:unconfined_t:s0 ocomm="sleep”

SystemTap vs userland tools

strace can only handle system calls
Itrace can only handle userland functions

{s,I}trace can only monitor specific processes

vV v v Y

{s,I}trace cannot process traces on the fly (statistics,
advanced filtering,. ..)

v

gdb is more aimed at interactive debugging

References and questions

v

SystemTap wiki: http://sourceware.org/systemtap/wiki

v

lot of excellent documentation included:

» man -k stap
» file:///usr/share/doc/systemtap*

v

there is probably already a script to do what you want:
http://sourceware.org/systemtap/examples/

v

systemtap@sources.redhat.com

v

irc://chat.freenode.net/#systemtap

http://sourceware.org/systemtap/wiki
http://sourceware.org/systemtap/examples/
mailto:systemtap@sources.redhat.com
irc://chat.freenode.net/#systemtap

Agenda

More examples?

Example 8: callgraph for anything

Listing 8: examples/general/para-callgraph.stp (simplified a bit)

1 function trace(entry_p, extra) {

2 printf ("%s%s%s %s\n",

3 thread_indent (entry_p),
4 (entry_p>07"=->":"<=-"),

5 probefunc (),

6 extra)

7}

9 probe $1.call { trace(l, $$parms) 1}
10 probe $1.return { trace(-1, $$return) 7

Example 8: using para-callgraph.stp

stap examples/general/para—callgraph.stp

"process (" /usr/sbin/sendmail”).function ("x")"’
0 sendmail (4523):—>doqueuerun

1736 sendmail (4523):<—doqueuerun return=0x0
0 sendmail (4523):—>sm_blocksignal sig=0xe
56 sendmail (4523):<—sm_blocksignal return=0x0
0 sendmail (4523):—>curtime
22 sendmail (4523):<—curtime return=0x4c06fb34
0 sendmail (4523):—>refuseconnections name=0x93ad8b0

e=0x343a80 d=0x0 active=0x0
59 sendmail (4523): —>sm_getla
109 sendmail (4523): —>getla

930 sendmail (4523): —>sm_io_open type=0x3432c0
timeout=0xfffffffffffffffe info=0x3231cd flags=0x2
rpool=0x0

1733 sendmail (4523): —>sm_flags flags=0x2

1771 sendmail (4523): <—sm_flags return=0x10

1876 sendmail (4523): —>sm_fp t=0x3432c0 flags=0x10
oldfp=0x0

12409 sendmail (4523): <—sm_fp return=0x372d7c

Example 9: block 1/0O requests monitoring

Listing 9: examples/io/ioblktime.stp (part 1 of 2)

1 global req_time, etimes
2
3 probe ioblock.request {
4 req_-time[$bio] = gettimeofday_us ()
5}
6
7 probe ioblock.end {
8 t = gettimeofday_us ()
9 s = req-time[$bio]
10 delete req_-time[$bio]
1 if (s) {
12 etimes [devname, bio_rw_str(rw)] <<< t — s
13
}

-
i

}
This is just to collect the data (no printing).

Example 9 continued: printing the collected data

Listing 10: continuation of examples/io/ioblktime.stap (part 2 of 2)
15 probe timer.s(10), end {

16 ansi_clear_screen ()

7 printf("%10s %3s %10s %10s %10s\n",

18 "device”, "rw”, "total (us)”, "count”, "avg (us)")
19 foreach ([dev,rw] in etimes — limit 20) {

20 printf(”%10s %3s %10d %10d %10d\n", dev, rw,

21 @sum(etimes[dev,rw]), Q@count(etimes|[dev,rw]),

2 Q@avg(etimes[dev,rw]))

23 }

24 delete etimes

Example 9 continued: what it looks like

stap examples/io/ioblktime.stp

device
sda
dm-0
dm-0
sda

rw

W
W
R
R

total (us)
270301266
270344450
30010
28615

count
2160
2160
4

4

avg (us)
125139
125159
7502
7153

	Explaining SystemTap
	Practical Examples
	Requirements and safety
	Guru mode
	Comparison to Other Tools
	Conclusion
	More examples?

